Stratification Theory
DOI10.1007/978-3-030-53061-7_4zbMath1478.32001OpenAlexW4210992244MaRDI QIDQ5014454
Publication date: 2 December 2021
Published in: Handbook of Geometry and Topology of Singularities I (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/978-3-030-53061-7_4
Research exposition (monographs, survey articles) pertaining to several complex variables and analytic spaces (32-02) (C^infty)-functions, quasi-analytic functions (26E10) Stratifications; constructible sheaves; intersection cohomology (complex-analytic aspects) (32S60) Semi-analytic sets, subanalytic sets, and generalizations (32B20) Research exposition (monographs, survey articles) pertaining to real functions (26-02)
Related Items (4)
Cites Work
- Weak Whitney regularity implies equimultiplicity for families of complex hypersurfaces
- Euler flag enumeration of Whitney stratified spaces
- A geometric proof of the existence of definable Whitney stratifications
- Local structures on stratified spaces
- Arc-wise analytic stratification, Whitney fibering conjecture and Zariski equisingularity
- Definable triangulations with regularity conditions
- Local features in natural images via singularity theory
- Detecting Thom faults in stratified mappings
- Elementary structure of real algebraic varieties
- Stratified mappings - structure and triangulability
- Theorème de De Rham pour les variétés stratifiées. (The De Rham theorem for stratified manifolds)
- Lipschitz triangulations
- Vector fields on singular varieties
- Abstract prestratified sets are (b)-regular
- Transverse transversals and homeomorphic transversals
- Conditions de régularité et éclatements. (Regularity conditions and blowing-ups)
- Volume on stratified sets
- On (\(\omega\) ) and \((t^ s)\)-regular stratifications
- Densité des ensembles sous-analytiques. (On the density of subanalytic sets)
- Une version microlocale de la condition (w) de Verdier. (A microlocal version of the condition (w) of Verdier)
- Verdier and strict Thom stratifications in o-minimal structures
- La stabilité topologique des applications polynomiales
- Sufficiency of jets via stratification theory
- Whitney regularity and generic wings
- Intersection homology theory
- The realization of abstract stratified sets
- Integral closure of modules and Whitney equisingularity
- Stratification of real analytic mappings and images
- Triangulation of subanalytic sets and proper subanalytic maps
- Stratifications de Whitney et théorème de Bertini-Sard
- Types topologiques des polynômes
- On Thom-Whitney stratification theory
- Topological stability of smooth mappings
- Stability of transversality to a stratification implies Whitney (a)- regularity
- Whitney homology, cohomology and Steenrod squares
- On stratified Morse theory
- Limits of tangent spaces to fibres and the \(w_ f\) condition
- Geometry of subanalytic and semialgebraic sets
- The Kuo condition, an inequality of Thom's type and \((c)\)-regularity
- On metric properties of stratified sets
- Whitney, Kuo-Verdier and Lipschitz stratifications for the surfaces \(y^{a}=z^{b}x^{c}+x^{d}\)
- A stratified homotopy hypothesis
- Variation of the Green function on Riemann surfaces and Whitney's holomorphic stratification conjecture
- Thom's conjecture on triangulations of maps
- Scribbling continua in \(\mathbb{R}^ n\) and constructing singularities with prescribed Nash fibre and tangent cone
- Champs totalement radiaux sur une structure de Thom-Mather. (Totally radial vector fields on a Thom-Mather space.)
- Geometric categories and o-minimal structures
- Lipschitz stratifications in power-bounded \(o\)-minimal fields
- A bilipschitz version of Hardt's theorem
- Real Milnor fibrations and \((C)\)-regularity
- Tangents to an analytic variety
- Normal cones in analytic Whitney stratifications
- Characterizations of v-sufficiency of jets
- Équisingularité réelle : nombres de Lelong et images polaires
- Stratification Theory from the Weighted Point of View
- Lipschitz stratifications in o-minimal structures
- The signature package on Witt spaces
- On the stratification by orbit types
- Triangulations of non-proper semialgebraic Thom maps
- Cône normal et régularités de Kuo-Verdier
- Equisingularity of sections, (𝑡^{𝑟}) condition, and the integral closure of modules
- On Proving the Geometric Versions of Whitney Regularity
- Sur la condition de Thom stricte pour un morphisme analytique complexe
- Blowing-Up and Whitney (a)-Regularity
- Whitney (b)-regularity is weaker than Kuo's ratio test for real algebraic stratifications.
- Geometric versions of Whitney regularity for smooth stratifications
- Whitney $(a)$-faults which are hard to detect
- Semi-Algebraic Local-Triviality in Semi-Algebraic Mappings
- Whitney Stratified Chains and Cochains
- A Transversality Property Weaker than Whitney (A)-Regularity
- The Invariance of Milnor's Number Implies the Invariance of the Topological Type
- Differential Topology
- Triangulation of Stratified Objects
- Exponentiation is Hard to Avoid
- Lipschitz stratification of subanalytic sets
- LIPSCHITZ STRATIFICATIONS AND GENERIC WINGS
- Stratifications and Finite Determinacy
- Local polar varieties in the geometric study of singularities
- Corrigendum: Briançon-Speder examples and the failure of weak Whitney regularity
- Whitney stratifications and the continuity of local Lipschitz–Killing curvatures
- On the local geometry of definably stratified sets
- Notes on Topological Stability
- Transversal homotopy theory
- Stratified Submersions and Condition (D)
- Medial/Skeletal Linking Structures for Multi-Region Configurations
- STRATIFIED TRANSVERSALITY OF HOLOMORPHIC MAPS
- Poincaré-Hopf theorems on singular spaces
- Volume, Whitney conditions and Lelong number
- Whitney triangulations of semialgebraic sets
- Briançon-Speder examples and the failure of weak Whitney regularity
- The Geometry of Immersions. I
- Ensembles et morphismes stratifiés
- Some open questions in the theory of singularities
- Differential Topology
- An invitation to Morse theory
- Analytic and geometric study of stratified spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Stratification Theory