An orthodontia formula for Grothendieck polynomials
From MaRDI portal
Publication:5023581
DOI10.1090/tran/8529zbMath1481.05156arXiv2011.13855OpenAlexW4205577186MaRDI QIDQ5023581
Linus Setiabrata, Avery St. Dizier, Karola Mészáros
Publication date: 24 January 2022
Full work available at URL: https://arxiv.org/abs/2011.13855
Symmetric functions and generalizations (05E05) Combinatorial aspects of representation theory (05E10) Grassmannians, Schubert varieties, flag manifolds (14M15) Classical problems, Schubert calculus (14N15)
Related Items
Top-degree components of Grothendieck and Lascoux polynomials, Kohnert's rule for flagged Schur modules
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Gröbner geometry of Schubert polynomials
- Schubert polynomials and Bott-Samelson varieties
- Some combinatorial properties of Schubert polynomials
- Schubert polynomials and the nilCoxeter algebra
- Balanced labellings and Schubert polynomials
- The Prism tableau model for Schubert polynomials
- A unified approach to combinatorial formulas for Schubert polynomials
- A \(K\)-theory version of Monk's formula and some related multiplication formulas
- The Yang-Baxter equation, symmetric functions, and Schubert polynomials
- From generalized permutahedra to Grothendieck polynomials via flow polytopes
- Bumpless pipe dreams and alternating sign matrices
- Newton polytopes in algebraic combinatorics
- Newton polytopes and symmetric Grothendieck polynomials
- Zero-one Schubert polynomials
- RC-Graphs and Schubert Polynomials
- Degrees of symmetric Grothendieck polynomials and Castelnuovo-Mumford regularity