Sobolev algebras through heat kernel estimates
From MaRDI portal
Publication:502552
DOI10.5802/jep.30zbMath1364.46029arXiv1505.01442OpenAlexW1502813799MaRDI QIDQ502552
Thierry Coulhon, Frédéric Bernicot, Dorothee Frey
Publication date: 5 January 2017
Published in: Journal de l'École Polytechnique -- Mathématiques (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1505.01442
Maximal functions, Littlewood-Paley theory (42B25) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Analysis on metric spaces (30L99)
Related Items (5)
Homogeneous algebras via heat kernel estimates ⋮ Trilinear embedding for divergence-form operators with complex coefficients ⋮ Weak \(A_\infty \) weights and weak reverse Hölder property in a space of homogeneous type ⋮ Sobolev algebras on nonunimodular Lie groups ⋮ Sobolev Algebras Through a ‘Carré Du Champ’ Identity
Cites Work
- Gaussian heat kernel bounds through elliptic Moser iteration
- Riesz transforms through reverse Hölder and Poincaré inequalities
- Algebra properties for Sobolev spaces -- applications to semilinear PDEs on manifolds
- A \(T(1)\)-theorem for non-integral operators
- A new approach to pointwise heat kernel upper bounds on doubling metric measure spaces
- Pseudodifferential operators associated with a semigroup of operators
- Dirichlet forms and symmetric Markov processes.
- Gaussian upper bounds for the heat kernel on arbitrary Riemannian manifolds
- Weighted norm inequalities, off-diagonal estimates and elliptic operators. I: General operator theory and weights
- Le calcul fonctionnel dans les espaces de Sobolev. (Functional calculus in Sobolev spaces)
- Hardy spaces of differential forms on Riemannian manifolds
- New abstract Hardy spaces
- On maximal regularity of type \(L^p-L^q\) under minimal assumptions for elliptic non-divergence operators
- Some new function spaces and their applications to harmonic analysis.
- Algèbres de Sobolev sur certains groupes nilpotents
- Calderón-Zygmund theory for operator-valued kernels
- Réalisations des espaces de Besov homogènes. (Realization of homogeneous Besov spaces)
- Pseudodifferential operators and nonlinear PDE
- Conical square function estimates and functional calculi for perturbed Hodge-Dirac operators in \(L^p\)
- The solution of the Kato square root problem for second order elliptic operators on \(\mathbb R^n\).
- Plancherel-type estimates and sharp spectral multipliers
- Calderón-Zygmund theory for non-integral operators and the \(H^\infty\) functional calculus
- Analysis on local Dirichlet spaces. II: Upper Gaussian estimates for the fundamental solutions of parabolic equations
- Singular integral operators on tent spaces
- Paraproducts via \(H^{\infty}\)-functional calculus
- Propagation of low regularity for solutions of nonlinear PDEs on a riemannian manifold with a sub-Laplacian structure
- Kato's square root problem in Banach spaces
- Some remarks on gradient estimates for heat kernels
- Riesz transform and \(L^p\)-cohomology for manifolds with Euclidean ends
- Semigroup kernels, Poisson bounds, and holomorphic functional calculus
- Imaginary powers of Laplace operators
- Sobolev algebras on Lie groups and Riemannian manifolds
- Vertical versus conical square functions
- A 𝑇(1)-theorem in relation to a semigroup of operators and applications to new paraproducts
- On the relation of Carleson's embedding and the maximal theorem in the context of Banach space geometry
- Riesz transform on manifolds and heat kernel regularity
- Interpolation of Linear Operators
- On necessary and sufficient conditions for 𝐿^{𝑝}-estimates of Riesz transforms associated to elliptic operators on ℝⁿ and related estimates
- Classical Fourier Analysis
- Commutator estimates and the euler and navier-stokes equations
- Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires
- Riesz transforms for $1\le p\le 2$
- Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and Lp-Liouville properties.
- Necessary conditions on composition operators acting on Sobolev spaces of fractional order. The critical case 1<s<n/p
- Conditions on composition operators which map a space of Triebel-Lizorkin type into a Sobolev space. The case 1 < s < n/p. II
- Necessary conditions on composition operators acting between Besov spaces. The case 1 < s < n/p. III
- Sobolev met Poincaré
- On the Littlewood-Paley-Stein g-Function
- Besov algebras on Lie groups of polynomial growth
- Riesz meets Sobolev
- Gaussian heat kernel upper bounds via the Phragmén-Lindelöf theorem
- Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. (AM-63)
- Some Maximal Inequalities
- Exact smoothing properties of Schrodinger semigroups
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Sobolev algebras through heat kernel estimates