Categorical traces and a relative Lefschetz–Verdier formula
From MaRDI portal
Publication:5028874
DOI10.1017/fms.2022.2OpenAlexW3024587010MaRDI QIDQ5028874
Publication date: 11 February 2022
Published in: Forum of Mathematics, Sigma (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2005.08522
Étale and other Grothendieck topologies and (co)homologies (14F20) Deformations of complex singularities; vanishing cycles (32S30) 2-categories, bicategories, double categories (18N10) Monoidal categories, symmetric monoidal categories (18M05)
Related Items
Relative perversity, Trace maps in motivic homotopy and local terms, On the Kottwitz conjecture for local shtuka spaces
Cites Work
- Around the Thom-Sebastiani theorem, with an appendix by Weizhe Zheng
- Higher traces, noncommutative motives, and the categorified Chern character
- The characteristic cycle and the singular support of a constructible sheaf
- Lefschetz-Verdier trace formula and a generalization of a theorem of Fujiwara
- Cohomologie étale. Seminaire de géométrie algébrique du Bois-Marie SGA 4 1/2 par P. Deligne, avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier
- Geometric Eisenstein series
- The Lefschetz-Lunts formula for deformation quantization modules
- On the relative twist formula of \(\ell\)-adic sheaves
- Duality and nearby cycles over general bases
- Six operations and Lefschetz-Verdier formula for Deligne-Mumford stacks
- Seminar of algebraic geometry du Bois-Marie 1963--1964. Topos theory and étale cohomology of schemes (SGA 4). Vol. 1: Topos theory. Exp. I--IV
- The pro-\'etale topology for schemes
- Modifications et cycles proches sur une base generale
- Théorie de Brauer et conducteur de Swan
- Etale Cohomology Theory
- Nonlinear Traces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item