The projective cover of tableau-cyclic indecomposable 𝐻_{𝑛}(0)-modules
DOI10.1090/tran/8693OpenAlexW4220786217MaRDI QIDQ5039721
Seung-Il Choi, Young-Tak Oh, Sun-Young Nam, Young-Hun Kim
Publication date: 4 October 2022
Published in: Transactions of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2008.06830
projective cover0-Hecke algebraquasisymmetric characteristicquasisymmetric Schur functiondual immaculate quasisymmetric functionextended Schur function
Symmetric functions and generalizations (05E05) Combinatorial aspects of representation theory (05E10) Hecke algebras and their representations (20C08)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Properties of the nonsymmetric Robinson-Schensted-Knuth algorithm
- A tableau approach to the representation theory of 0-Hecke algebras
- 0-Hecke algebras of finite Coxeter groups.
- A combinatorial formula for orthogonal idempotents in the 0-Hecke algebra of the symmetric group.
- Modules of the 0-Hecke algebra and quasisymmetric Schur functions
- Noncommutative symmetric functions. IV: Quantum linear groups and Hecke algebras at \(q=0\)
- Permuted composition tableaux, 0-Hecke algebra and labeled binary trees
- Modules of the 0-Hecke algebra arising from standard permuted composition tableaux
- Yang-Baxter bases of 0-Hecke algebras and representation theory of 0-Ariki-Koike-Shoji algebras.
- An Introduction to Quasisymmetric Schur Functions
- Indecomposable 0-Hecke modules for extended Schur functions
- A Lift of the Schur and Hall–Littlewood Bases to Non-commutative Symmetric Functions
- Indecomposable modules for the dual immaculate basis of quasi-symmetric functions
- The decomposition of 0-Hecke modules associated to quasisymmetric Schur functions
This page was built for publication: The projective cover of tableau-cyclic indecomposable 𝐻_{𝑛}(0)-modules