Phase transition on the convergence rate of parameter estimation under an Ornstein-Uhlenbeck diffusion on a tree
DOI10.1007/s00285-016-1029-xzbMath1358.62069arXiv1406.1568OpenAlexW2963318278WikidataQ39724564 ScholiaQ39724564MaRDI QIDQ504087
Sebastien Roch, Cécile Ané, Lam Si Tung Ho
Publication date: 25 January 2017
Published in: Journal of Mathematical Biology (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1406.1568
Asymptotic properties of parametric estimators (62F12) Applications of statistics to biology and medical sciences; meta analysis (62P10) Non-Markovian processes: estimation (62M09) Problems related to evolution (92D15) Taxonomy, cladistics, statistics in mathematical biology (92B10) Diffusion processes (60J60)
Related Items (9)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A phylogenetic comparative method for studying multivariate adaptation
- Asymptotic theory with hierarchical autocorrelation: Ornstein-Uhlenbeck tree models
- \(U\)-statistics of Ornstein-Uhlenbeck branching particle system
- Majority rule has transition ratio 4 on Yule trees under a 2-state symmetric model
- Functionals of critical multitype branching processes
- Broadcasting on trees and the Ising model.
- CLT for Ornstein-Uhlenbeck branching particle system
- Phylogenetic confidence intervals for the optimal trait value
- Mathematical Statistics
- Robust Estimation of Latent Tree Graphical Models: Inferring Hidden States With Inexact Parameters
This page was built for publication: Phase transition on the convergence rate of parameter estimation under an Ornstein-Uhlenbeck diffusion on a tree