COSAC: COmpact and Scalable Arbitrary-Centered Discrete Gaussian Sampling over Integers
From MaRDI portal
Publication:5041226
DOI10.1007/978-3-030-44223-1_16zbMath1501.94062OpenAlexW2941062911MaRDI QIDQ5041226
Ron Steinfeld, Amin Sakzad, Raymond K. Zhao
Publication date: 13 October 2022
Published in: Post-Quantum Cryptography (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/978-3-030-44223-1_16
Cryptography (94A60) Sampling theory in information and communication theory (94A20) Quantum cryptography (quantum-theoretic aspects) (81P94)
Related Items
Lattice-based proof of shuffle and applications to electronic voting ⋮ How to sample a discrete Gaussian (and more) from a random oracle
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Practical implementation of Ring-SIS/LWE based signature and IBE
- Gaussian sampling over the integers: efficient, generic, constant-time
- Rounded Gaussians -- fast and secure constant-time sampling for lattice-based crypto
- Sharper bounds in lattice-based cryptography using the Rényi divergence
- Improved Security Proofs in Lattice-Based Cryptography: Using the Rényi Divergence Rather Than the Statistical Distance
- Sampling Exactly from the Normal Distribution
- Lattice Signatures and Bimodal Gaussians
- Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller
- Efficient Identity-Based Encryption over NTRU Lattices
- Trapdoors for hard lattices and new cryptographic constructions
- An Efficient and Parallel Gaussian Sampler for Lattices
- CDT-based Gaussian Sampling: From Multi to Double Precision
- Faster Gaussian Lattice Sampling Using Lazy Floating-Point Arithmetic
- Sampling from Arbitrary Centered Discrete Gaussians for Lattice-Based Cryptography
- FACCT: FAst, Compact, and Constant-Time Discrete Gaussian Sampler over Integers
This page was built for publication: COSAC: COmpact and Scalable Arbitrary-Centered Discrete Gaussian Sampling over Integers