Two balls maximize the third Neumann eigenvalue in hyperbolic space
From MaRDI portal
Publication:5041373
DOI10.2422/2036-2145.202010_059zbMath1500.35216arXiv2009.09980OpenAlexW3160576738WikidataQ115489992 ScholiaQ115489992MaRDI QIDQ5041373
Pedro Freitas, Richard Snyder Laugesen
Publication date: 13 October 2022
Published in: ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2009.09980
Boundary value problems for second-order elliptic equations (35J25) Estimates of eigenvalues in context of PDEs (35P15) Degree, winding number (55M25) PDEs on manifolds (35R01)
Related Items (2)
Maximizers beyond the hemisphere for the second Neumann eigenvalue ⋮ Maximization of Neumann eigenvalues
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Numerical optimization of low eigenvalues of the Dirichlet and Neumann laplacians
- Isoperimetric inequality for the second eigenvalue of a sphere.
- Maximization of the second non-trivial Neumann eigenvalue
- An isoperimetric inequality for Laplace eigenvalues on the sphere
- Well-posedness of Weinberger's center of mass by Euclidean energy minimization
- Well-posedness of Hersch-Szegő's center of mass by hyperbolic energy minimization
- Maximization of the second positive Neumann eigenvalue for planar domains
- Bounds and extremal domains for Robin eigenvalues with negative boundary parameter
- A second eigenvalue bound for the Dirichlet Laplacian in hyperbolic space
- Shape optimization and spectral theory
- From Steklov to Neumann and Beyond, via Robin: The Szegő Way
- A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of 𝕊ⁿ
- On the Existence of Metrics Which Maximize Laplace Eigenvalues on Surfaces
- Sharp Upper Bound to the First Nonzero Neumann Eigenvalue for Bounded Domains in Spaces of Constant Curvature
- From Neumann to Steklov and beyond, via Robin: The Weinberger way
- Robin spectrum: two disks maximize the third eigenvalue
- Shape optimization for low Neumann and Steklov eigenvalues
- Universal Bounds for the Low Eigenvalues of Neumann Laplacians inNDimensions
- Maximization of the second conformal eigenvalue of spheres
- Isoperimetric Inequality for Some Eigenvalues of an Inhomogeneous, Free Membrane
This page was built for publication: Two balls maximize the third Neumann eigenvalue in hyperbolic space