Fiber-homotopy self-equivalences and a classification of fibrations in rational homotopy
From MaRDI portal
Publication:504546
DOI10.1007/S40062-016-0152-0zbMath1364.55009OpenAlexW2534563967MaRDI QIDQ504546
Toshihiro Yamaguchi, Shoji Yokura
Publication date: 17 January 2017
Published in: Journal of Homotopy and Related Structures (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s40062-016-0152-0
depthderivationrational homotopyHalperin conjectureSullivan minimal modelfibre-homotopy self-equivalencespure spacetotally non-cohomologus to zero (tncz)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Non-formal homogeneous spaces
- C-symplectic poset structure on a simply connected space
- On fibrations with formal elliptic fibers
- The rational homotopy type of the space of self-equivalences of a fibration
- Principal quasifibrations and fibre homotopy equivalence of bundles
- Homotopie rationelle: modèles de Chen, Quillen, Sullivan
- Sullivan minimal models of classifying spaces for non-formal spaces of small rank
- A fibre-restricted Gottlieb group and its rational realization problem
- The Lie algebra structure of tangent cohomology and deformation theory
- Rational fibrations, homogeneous spaces with positive Euler characteristics and Jacobians
- Rational universal fibrations and flag manifolds
- Infinitesimal computations in topology
- Rational homotopy nilpotency of self-equivalences
- Cohomologie des espaces localement compacts d'apres J. Leray
- On fibre spaces and the evaluation map
- L'homologie d'un espace fibre dont la fibre est connexe
- Homologie singulière des espaces fibrés. Applications
- Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts
- Rational homotopy type of the classifying space for fibrewise self-equivalences
- Rational homotopy of gauge groups
- Dénombrement des types de K-homotopie. Théorie de la déformation
- Rational L.-S. Category and Its Applications
- Evaluation Subgroups of Homotopy Groups
- Applications of Bundle Map Theory
This page was built for publication: Fiber-homotopy self-equivalences and a classification of fibrations in rational homotopy