Limit Cycles of a Class of Discontinuous Piecewise Differential Systems Separated by the Curve y = xn Via Averaging Theory
DOI10.1142/S0218127422501875OpenAlexW4304889872MaRDI QIDQ5049085
Publication date: 11 November 2022
Published in: International Journal of Bifurcation and Chaos (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1142/s0218127422501875
Topological structure of integral curves, singular points, limit cycles of ordinary differential equations (34C05) Bifurcation theory for ordinary differential equations (34C23) Linear ordinary differential equations and systems (34A30) Averaging method for ordinary differential equations (34C29) Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert's 16th problem and ramifications) for ordinary differential equations (34C07) Perturbations, asymptotics of solutions to ordinary differential equations (34E10)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Improving the averaging theory for computing periodic solutions of the differential equations
- Degenerate Hopf bifurcations in a family of FF-type switching systems
- Eighteen limit cycles around two symmetric foci in a cubic planar switching polynomial system
- Limit cycles of differential equations
- On Hopf bifurcation in non-smooth planar systems
- Nonlinear oscillations, dynamical systems, and bifurcations of vector fields
- Averaging methods for finding periodic orbits via Brouwer degree.
- Configurations of limit cycles and planar polynomial vector fields.
- Limit cycles for discontinuous planar piecewise linear differential systems separated by one straight line and having a center
- Limit cycles in planar piecewise linear differential systems with nonregular separation line
- A new result on averaging theory for a class of discontinuous planar differential systems with applications
- New lower bound for the Hilbert number in piecewise quadratic differential systems
- Averaging theory of arbitrary order for piecewise smooth differential systems and its application
- On the birth of limit cycles for non-smooth dynamical systems
- Global dynamics of a mechanical system with dry friction
- Averaging theory at any order for computing periodic orbits
- Higher order Melnikov analysis for planar piecewise linear vector fields with nonlinear switching curve
- Limit cycles in piecewise polynomial systems allowing a non-regular switching boundary
- Bifurcation of limit cycles by perturbing piecewise non-Hamiltonian systems with nonlinear switching manifold
- Limit cycles in 4-star-symmetric planar piecewise linear systems
- Cyclicity of \((1,3)\)-switching FF type equilibria
- Limit cycles for discontinuous quadratic differential systems with two zones
- Averaging theory for discontinuous piecewise differential systems
- Piecewise-smooth dynamical systems. Theory and applications
- On extended Chebyshev systems with positive accuracy
- Averaging approach to cyclicity of Hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems
- Melnikov analysis in nonsmooth differential systems with nonlinear switching manifold
- Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center
- Averaging methods of arbitrary order, periodic solutions and integrability
- Planar systems of piecewise linear differential equations with a line of discontinuity
- Fixed point theory and nonlinear problems
- Higher Order Analysis on the Existence of Periodic Solutions in Continuous Differential Equations via Degree Theory
- Simultaneous occurrence of sliding and crossing limit cycles in piecewise linear planar vector fields
- Neuronal Networks with Gap Junctions: A Study of Piecewise Linear Planar Neuron Models
- HILBERT'S 16TH PROBLEM AND BIFURCATIONS OF PLANAR POLYNOMIAL VECTOR FIELDS
- The McKean's Caricature of the Fitzhugh--Nagumo Model I. The Space-Clamped System
- Higher order averaging theory for finding periodic solutions via Brouwer degree
- Averaging methods in nonlinear dynamical systems
This page was built for publication: Limit Cycles of a Class of Discontinuous Piecewise Differential Systems Separated by the Curve y = xn Via Averaging Theory