The Krein–von Neumann extension revisited
DOI10.1080/00036811.2021.1938005OpenAlexW3176093607MaRDI QIDQ5072131
Jonathan Stanfill, Guglielmo Fucci, Klaus Kirsten, Roger A. Nichols, Lance L. Littlejohn, Friedrich Gesztesy
Publication date: 25 April 2022
Published in: Applicable Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2102.00685
singular Sturm-Liouville operatorsKrein-von Neumann extensionBessel and Jacobi-type differential operators
Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.) (34L40) Sturm-Liouville theory (34B24) Weyl theory and its generalizations for ordinary differential equations (34B20) Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations (34C10) Special ordinary differential equations (Mathieu, Hill, Bessel, etc.) (34B30) Boundary eigenvalue problems for ordinary differential equations (34B09)
Related Items (1)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A bound for the eigenvalue counting function for Krein-von Neumann and Friedrichs extensions
- Boundary triples and Weyl \(m\)-functions for powers of the Jacobi differential operator
- Spectral theory for perturbed Krein Laplacians in nonsmooth domains
- Friedrichs and Krein extensions of positive operators and holomorphic contraction semigroups
- Generalized resolvents and the boundary value problems for Hermitian operators with gaps
- Self-adjoint operators
- The classical moment problem as a self-adjoint finite difference operator
- Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator
- Floquet theory for left-definite Sturm-Liouville problems
- The von Neumann problem for nonnegative symmetric operators
- The extension theory of Hermitian operators and the moment problem
- A survey of some norm inequalities
- On self-adjoint boundary conditions for singular Sturm-Liouville operators bounded from below
- Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression
- Orthogonality of Jacobi polynomials with general parameters
- Positive selfadjoint extensions of positive symmetric operators
- Die zulässigen Randbedingungen bei den singulären Eigenwertproblemen der mathematischen Physik. (Gewöhnliche Differentialgleichungen zweiter Ordnung.)
- Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung
- Positive self-adjoint extensions of operators affiliated with a von Neumann algebra.
- Distributions and Operators
- M. Kreĭn’s Research on Semi-Bounded Operators, its Contemporary Developments, and Applications
- Singular Sturm-Liouville Problems: The Friedrichs Extension and Comparison of Eigenvalues
- Jacobische Differentialoperatoren
- A Characterization of the Friedrichs Extension of Sturm-Liouville Operators
- On Kreĭn's extension theory of nonnegative operators
- A New Characterization of the Friedrichs Extension of Semibounded Sturm-Liouville Operators
- A Survey on the Krein–von Neumann Extension, the Corresponding Abstract Buckling Problem, and Weyl-type Spectral Asymptotics for Perturbed Krein Laplacians in Nonsmooth Domains
- Singular Sturm–Liouville operators with extreme properties that generate black holes
- Principal Solutions Revisited
- The Krein–von Neumann extension and its connection to an abstract buckling problem
- Boundary Value Problems, Weyl Functions, and Differential Operators
- Boundary data maps and Krein's resolvent formula for Sturm-Liouville operators on a finite interval
- On the Assignment of Asymptotic Values for the Solutions of Linear Differential Equations of Second Order
This page was built for publication: The Krein–von Neumann extension revisited