On a class of nonlocal problems in new fractional Musielak-Sobolev spaces
From MaRDI portal
Publication:5072926
DOI10.1080/00036811.2020.1789601zbMath1497.46040OpenAlexW3040443308MaRDI QIDQ5072926
Mohammed Srati, Elhoussine Azroul, Mohammed Shimi, Abdelmoujib Benkirane
Publication date: 5 May 2022
Published in: Applicable Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/00036811.2020.1789601
Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Variational methods for second-order elliptic equations (35J20) Integro-differential operators (47G20) Fractional partial differential equations (35R11)
Related Items (5)
Embedding and extension results in fractional Musielak–Sobolev spaces ⋮ On the L∞‐regularity for fractional Orlicz problems via Moser's iteration ⋮ Higher-order chain rules for tensor fields, generalized Bell polynomials, and estimates in Orlicz-Sobolev-Slobodeckij and total variation spaces ⋮ On fractional Musielak-Sobolev spaces and applications to nonlocal problems ⋮ Multiple solutions for a class of quasilinear problems with double criticality
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Hitchhiker's guide to the fractional Sobolev spaces
- Orlicz spaces and modular spaces
- Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces
- Mountain pass type solutions for quasilinear elliptic equations
- On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent
- Eigenvalue problems involving the fractional \(p(x)\)-Laplacian operator
- Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces
- General fractional Sobolev space with variable exponent and applications to nonlocal problems
- Nonlocal eigenvalue type problem in fractional Orlicz-Sobolev space. Nonlocal eigenvalue type problem
- Weak approximative compactness of hyperplane and Asplund property in Musielak-Orlicz-Bochner function spaces
- Fractional order Orlicz-Sobolev spaces
- Existence of solutions to a semilinear elliptic system trough Orlicz-Sobolev spaces
- Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices
- A new regularity criterion for the nematic liquid crystal flows
- Variational Methods for Nonlocal Fractional Problems
- Fractional Sobolev spaces with variable exponents and fractional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mrow> <mml:mo form="prefix">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo form="postfix">)</mml:mo> </mml:mrow> </mml:mrow> </mml:math>-Laplacians
- Three solutions for a nonlocal fractionalp-Kirchhoff type elliptic system
- Existence and multiplicity of solutions for fractional p(x,.)-Kirchhoff-type problems in ℝN
- On a class of fractional p(x) -Kirchhoff type problems
- Three solutions for a Kirchhoff-type problem involving nonlocal fractional $p$-Laplacian
- Mathematical modeling of electrorheological materials
This page was built for publication: On a class of nonlocal problems in new fractional Musielak-Sobolev spaces