The monodromy of unit-root F-isocrystals with geometric origin
From MaRDI portal
Publication:5073329
DOI10.1112/S0010437X2200728XzbMath1502.14052arXiv1812.02803OpenAlexW2904930479MaRDI QIDQ5073329
Publication date: 6 May 2022
Published in: Compositio Mathematica (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1812.02803
Related Items
IWASAWA THEORY FORp-TORSION CLASS GROUP SCHEMES IN CHARACTERISTICp ⋮ Minimal slope conjecture of \(F\)-isocrystals
Cites Work
- On ramification filtrations and \(p\)-adic differential modules. I: The equal characteristic case
- Swan conductors for \(p\)-adic differential modules. I: A local construction
- Cohomologie cristalline des schemas de caractéristique \(p >0\)
- Slope filtration of quasi-unipotent overconvergent \(F\)-isocrystals
- Smoothness, semi-stability and alterations
- Ramification of local fields with imperfect residue fields. II
- Slopes of indecomposable \(F\)-isocrystals
- Local indices of \(p\)-adic differential operators corresponding to Artin-Schreier-Witt coverings
- Dwork's conjecture on unit root zeta functions
- Slope filtrations of \(F\)-isocrystals and logarithmic decay
- Notes on isocrystals
- Class numbers and \(p\)-ranks in $\mathbb{Z}_p^d$-towers
- Ramification in p-adic Lie extensions
- Genus growth in $\mathbb {Z}_p$-towers of function fields
- Arithmetic and differential Swan conductors of rank one representations with finite local monodromy
- Arithmetic Moduli of Elliptic Curves. (AM-108)
- Logarithmic decay and overconvergence of the unit root and associated zeta functions
- Notes on Crystalline Cohomology. (MN-21)
- Finite local monodromy of overconvergent unit-root F -isocrystals on a curve
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item