Rational points on an intersection of diagonal forms
From MaRDI portal
Publication:5076526
DOI10.4064/aa210310-18-12zbMath1505.11131arXiv2103.07192OpenAlexW3137408772MaRDI QIDQ5076526
Publication date: 17 May 2022
Published in: Acta Arithmetica (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2103.07192
Estimates on exponential sums (11L07) Applications of the Hardy-Littlewood method (11P55) Counting solutions of Diophantine equations (11D45) Diophantine equations in many variables (11D72) Higher degree equations; Fermat's equation (11D41)
Cites Work
- Unnamed Item
- Unnamed Item
- On van der Corput's \(k\)-th derivative test for exponential sums
- Proof of the main conjecture in Vinogradov's mean value theorem for degrees higher than three
- Vinogradov's mean value theorem via efficient congruencing
- On generating functions in additive number theory. II: Lower-order terms and applications to PDEs
- The density of integer points on homogeneous varieties
- The Asymptotic Formula in Waring’s Problem
- A PAUCITY ESTIMATE RELATED TO NEWTON SUMS OF ODD DEGREE
- Mean value estimates for odd cubic Weyl sums
- Some extremal functions in Fourier analysis
- Weyl's Inequality, Hua's Inequality, and Waring's Problem
- Pairs of additive equations of small degree
- Points Entiers Au Voisinage D'une Courbe, Sommes Trigonométriques Courtes ET Paires D'exposants
- The Vinogradov Mean Value Theorem [after Wooley, and Bourgain, Demeter and Guth]
- Rational points on linear slices of diagonal hypersurfaces
- Nested efficient congruencing and relatives of Vinogradov's mean value theorem
This page was built for publication: Rational points on an intersection of diagonal forms