The minimal angle condition for quadrilateral finite elements of arbitrary degree
DOI10.1016/j.cam.2016.11.041zbMath1357.65236OpenAlexW2964160891MaRDI QIDQ507986
Gabriel Acosta, Gabriel Monzón
Publication date: 9 February 2017
Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)
Full work available at URL: http://hdl.handle.net/11336/55567
Lagrange interpolationerror estimatequadrilateral elementscounterexamplesmaximum angle conditionanisotropic finite elementsminimum angle condition
Error bounds for boundary value problems involving PDEs (65N15) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements
- The interpolation theorem for narrow quadrilateral isoparametric finite elements
- Applicability of the Bramble-Hilbert lemma in interpolation problems of narrow quadrilateral isoparametric finite elements
- Interpolation error estimates in \(W^{1,p}\) for degenerate \(Q_1\) isoparametric elements
- Interpolation theory over curved elements, with applications to finite element methods
- On the Angle Condition in the Finite Element Method
- Estimation of the Interpolation Error for Quadrilateral Finite Elements Which Can Degenerate into Triangles
- The Maximum Angle Condition for Mixed and Nonconforming Elements: Application to the Stokes Equations
- Error Estimates for $\Cq_1$ Isoparametric Elements Satisfying a Weak Angle Condition
- Approximation by quadrilateral finite elements
- Error estimates for some quasi-interpolation operators
- On the Interpolation Error Estimates for $Q_1$ Quadrilateral Finite Elements
This page was built for publication: The minimal angle condition for quadrilateral finite elements of arbitrary degree