Penalized I-spline monotone regression estimation
DOI10.1080/03610918.2019.1630433zbMath1497.62093OpenAlexW2955071064WikidataQ127610640 ScholiaQ127610640MaRDI QIDQ5082810
Junsouk Choi, Jae-Hwan Jhong, JungJun Lee, Ja-Yong Koo
Publication date: 21 June 2022
Published in: Communications in Statistics - Simulation and Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/03610918.2019.1630433
coordinate descent algorithmmonotone regressiontotal variation penaltyknot selectionI-splinesmaximum complexity parameter
Computational methods for problems pertaining to statistics (62-08) Nonparametric regression and quantile regression (62G08) Density estimation (62G07) Asymptotic properties of nonparametric inference (62G20)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Inference using shape-restricted regression splines
- Penalized B-spline estimator for regression functions using total variation penalty
- Estimating a smooth monotone regression function
- Locally adaptive regression splines
- A general projection framework for constrained smoothing.
- Flexible smoothing with \(B\)-splines and penalties. With comments and a rejoinder by the authors
- Nonparametric kernel regression subject to monotonicity constraints
- Penalized isotonic regression
- Pathwise coordinate optimization
- Constrained penalized splines
- Maximum Likelihood Estimates of Monotone Parameters
- Comparing Automatic Smoothers (A Public Service Enterprise)
- Estimating Smooth Monotone Functions
- Sparsity and Smoothness Via the Fused Lasso
- Smoothing Splines and Shape Restrictions
This page was built for publication: Penalized I-spline monotone regression estimation