Weak and strong laws of large numbers for sub-linear expectation
From MaRDI portal
Publication:5085586
DOI10.1080/03610926.2018.1543771OpenAlexW2911569656WikidataQ128439543 ScholiaQ128439543MaRDI QIDQ5085586
Publication date: 27 June 2022
Published in: Communications in Statistics - Theory and Methods (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/03610926.2018.1543771
Related Items (7)
Laws of large numbers under model uncertainty with an application to \(m\)-dependent random variables ⋮ Strong laws of large numbers for weighted sums of extended negatively dependent random variables under sub-linear expectations ⋮ Limit theorems for delayed sums under sublinear expectation ⋮ The laws of large numbers for Pareto-type random variables under sub-linear expectation ⋮ Unnamed Item ⋮ On the laws of large numbers for pseudo-independent random variables under sublinear expectation ⋮ Pareto-optimal reinsurance revisited: a two-stage optimisation procedure approach
Cites Work
- Unnamed Item
- Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications
- Strong laws of large numbers for sub-linear expectations
- A strong law of large numbers for sub-linear expectation under a general moment condition
- Concentration inequalities and laws of large numbers under epistemic and regular irrelevance
- Limit laws for non-additive probabilities and their frequentist interpretation
- A strong law of large numbers for capacities
- Bayes' theorem for Choquet capacities
- Laws of large numbers of negatively correlated random variables for capacities
- A strong law of large numbers for non-additive probabilities
- Minimax tests and the Neyman-Pearson lemma for capacities
- Theory of capacities
- Ambiguity, Risk, and Asset Returns in Continuous Time
This page was built for publication: Weak and strong laws of large numbers for sub-linear expectation