Statistical inference in the partial linear models with the inverse gaussian kernel
From MaRDI portal
Publication:5086146
DOI10.1080/03610918.2017.1377240OpenAlexW2758991662MaRDI QIDQ5086146
Juxia Xiao, Xu Li, Jian-Hong Shi
Publication date: 1 July 2022
Published in: Communications in Statistics - Simulation and Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/03610918.2017.1377240
heteroscedasticitypartial linear modelhomoscedasticitylarge sample propertiesinverse Gaussian kernel
Asymptotic properties of parametric estimators (62F12) Asymptotic properties of nonparametric inference (62G20)
Related Items (2)
Adaptive nonparametric regression on finite support ⋮ Asymptotic properties of Dirichlet kernel density estimators
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Beta kernel estimators for density functions
- Local multiplicative bias correction for asymmetric kernel density estimators
- Inverse beta transformation in kernel density estimation
- Wavelet estimation of partially linear models
- Local polynomial estimation in partial linear regression models under dependence
- Convergence rates for parametric components in a partly linear model
- A two-stage spline smoothing method for partially linear models
- Local linear estimation in partly linear models
- Kernel density estimation of actuarial loss functions
- Generalized Birnbaum-Saunders kernel density estimators and an analysis of financial data
- Large sample results for varying kernel regression estimates
- Generalised kernel smoothing for non-negative stationary ergodic processes
- Root-N-Consistent Semiparametric Regression
- Transformations in Density Estimation
- Density estimation using inverse and reciprocal inverse Gaussian kernels
- Asymptotic results in gamma kernel regression
- Probability density function estimation using gamma kernels
This page was built for publication: Statistical inference in the partial linear models with the inverse gaussian kernel