Continuity in law of some additive functionals of bifractional Brownian motion
DOI10.1080/17442508.2019.1568436zbMath1495.60024OpenAlexW2910987064MaRDI QIDQ5086438
M. Ait Ouahra, Hanae Ouahhabi, Aissa Sghir
Publication date: 5 July 2022
Published in: Stochastics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/17442508.2019.1568436
fractional Brownian motionlimit theoremtightnesslocal timefractional derivativeslowly varying functionbifractional Brownian motionanisotropic Besov spacecontinuity in law
Gaussian processes (60G15) Fractional processes, including fractional Brownian motion (60G22) Sample path properties (60G17) Functional limit theorems; invariance principles (60F17) Local time and additive functionals (60J55)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the local time of sub-fractional Brownian motion
- Geometric properties of fractional Brownian sheets
- A decomposition of the bifractional Brownian motion and some applications
- Continuity in the Hurst index of the local times of anisotropic Gaussian random fields
- Occupation densities
- Limit theorems and variation properties for fractional derivatives of the local time of a stable process
- Quadratic variations and estimation of the local Hölder index of a Gaussian process
- Limit theorems for local times of fractional Brownian motions and some other self-similar processes
- On some limit theorems for occupation times of one dimensional Brownian motion and its continuous additive functionals locally of zero energy
- Chaotic expansion and smoothness of some functionals of the fractional Brownian motion
- Regularities and limit theorems of some additive functionals of symmetric stable process in some anisotropic Besov spaces
- The generalized Bouleau-Yor identity for a sub-fractional Brownian motion
- Sample path properties of bifractional Brownian motion
- On bifractional Brownian motion
- Continuity in law with respect to the Hurst parameter of the local time of the fractional Brownian motion
- On the local time of multifractional Brownian motion
- MULTIDIMENSIONAL BIFRACTIONAL BROWNIAN MOTION: ITÔ AND TANAKA FORMULAS
- Sample function properties of multi-parameter stable processes
- Isomorphism of some anisotropic Besov and sequence spaces
- Quelques espaces fonctionnels associés à des processus gaussiens
- Un résultat d'approximation d'une EDPS hyperbolique en norme de Besov anisotropique
- Semi-Stable Stochastic Processes
- Théorèmes limites pour certaines fonctionnelles associées aux processus stables dans une classe d'espaces de besov
- Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths
This page was built for publication: Continuity in law of some additive functionals of bifractional Brownian motion