Corrected-Hill versus partially reduced-bias value-at-risk estimation
From MaRDI portal
Publication:5088009
DOI10.1080/03610918.2018.1489053OpenAlexW2912616883WikidataQ122112878 ScholiaQ122112878MaRDI QIDQ5088009
Lgia Henriques-Rodrigues, Fernanda Figueiredo, M. Ivette Gomes, Frederico Caeiro, Dinis Pestana
Publication date: 4 July 2022
Published in: Communications in Statistics - Simulation and Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/03610918.2018.1489053
statistics of extremesMonte-Carlo simulationsemi-parametric estimationvalue-at-risk estimationheavy right tailsheuristic sample fraction selection
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A simple generalisation of the Hill estimator
- Extreme quantile estimation for dependent data, with applications to finance
- Mean-of-order \(p\) reduced-bias extreme value index estimation under a third-order framework
- On an improvement of Hill and some other estimators
- A class of new tail index estimators
- Semi-parametric second-order reduced-bias high quantile estimation
- Mixed moment estimator and location invariant alternatives
- Bias reduction in risk modelling: semi-parametric quantile estimation
- Adaptive estimation of heavy right tails: resampling-based methods in action
- Adaptive estimates of parameters of regular variation
- A simple general approach to inference about the tail of a distribution
- The bootstrap methodology in statistics of extremes -- choice of optimal sample fraction
- A new partially reduced-bias mean-of-order \(p\) class of extreme value index estimators
- Modeling extreme events: sample fraction adaptive choice in parameter estimation
- The harmonic moment tail index estimator: asymptotic distribution and robustness
- Sur la distribution limite du terme maximum d'une série aléatoire
- Adaptive PORT–MVRB estimation: an empirical comparison of two heuristic algorithms
- Adaptive Reduced-Bias Tail Index and VaR Estimation via the Bootstrap Methodology
- New Reduced-bias Estimators of a Positive Extreme Value Index
- On Smooth Statistical Tail Functionals
- Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation
- Estimation of Parameters and Larger Quantiles Based on the k Largest Observations
- Comparison of tail index estimators
- A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator
- Statistics of Heteroscedastic Extremes
- Regularly varying functions
- Extreme Value Theory and Statistics of Univariate Extremes: A Review
This page was built for publication: Corrected-Hill versus partially reduced-bias value-at-risk estimation