On Hilbert genus fields of imaginary cyclic quartic fields
From MaRDI portal
Publication:5101836
DOI10.3906/mat-2101-120zbMath1497.11265arXiv2105.08441OpenAlexW3192147622MaRDI QIDQ5101836
Moulay Ahmed Hajjami, Mohamed Mahmoud Chems-Eddin
Publication date: 30 August 2022
Published in: TURKISH JOURNAL OF MATHEMATICS (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2105.08441
Units and factorization (11R27) Class field theory (11R37) Cubic and quartic extensions (11R16) Class numbers, class groups, discriminants (11R29)
Related Items (2)
Hilbert genus fields of some number fields with high degrees ⋮ The construction of the Hilbert genus fields of real cyclic quartic fields
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Hilbert genus fields of biquadratic fields
- Number fields with class number congruent to 4 mod 8 and Hilbert's Theorem 94
- The genus fields of algebraic number fields
- Hilbert class fields of real biquadratic fields
- Sur les \(\ell\)-classes d'idéaux dans les extensions cycliques rélatives de degré premier \(\ell\). I
- Integral bases for quartic fields with quadratic subfields
- Genus fields of real biquadratic fields
- Calculation of the Class Numbers of Imaginary Cyclic Quartic Fields
- On the Divisibility of the Class Numbers of Q(√−p) and Q(√−2p) by 16.
- The explicit Hilbert 2-cyclic class field for Q ().
- On Scholz's Reciprocity Law
- Units and2-class field towers of some multiquadratic number fields
- Capitulation des 2-classes d'idéaux de k=Q (\sqrt 2p, i)
- On the Hilbert $2$-class field tower of some imaginary biquadratic number fields
- Hilbert genus fields of real biquadratic fields
- Hilbert genus fields of real biquadratic fields
This page was built for publication: On Hilbert genus fields of imaginary cyclic quartic fields