A tour problem on a toroidal board
From MaRDI portal
Publication:5109060
zbMath1439.05044arXiv1902.05491MaRDI QIDQ5109060
Marco Dalai, Anita Pasotti, Simone Costa
Publication date: 7 May 2020
Full work available at URL: https://arxiv.org/abs/1902.05491
Related Items (10)
Non-zero sum Heffter arrays and their applications ⋮ Weak Heffter arrays and biembedding graphs on non-orientable surfaces ⋮ On the existence of integer relative Heffter arrays ⋮ Tight globally simple nonzero sum Heffter arrays and biembeddings ⋮ Unnamed Item ⋮ Unnamed Item ⋮ On \(\lambda\)-fold relative Heffter arrays and biembedding multigraphs on surfaces ⋮ Globally simple heffter arrays \(H ( n ; k )\) when \(k \equiv 0 , 3 \pmod 4 \) ⋮ Relative Heffter arrays and biembeddings ⋮ Board games, random boards and long boards
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Generalised knight's tours
- Generalized knight's tour on 3D chessboards
- Square integer Heffter arrays with empty cells
- On the diagonal queens domination problem
- Chessboard domination problems
- Solution of the knight's Hamiltonian path problem on chessboards
- The closed knight tour problem in higher dimensions
- On the existence of integer relative Heffter arrays
- Heffter arrays and biembedding graphs on surfaces
- Generalized knight's tours on rectangular chessboards
- Biembedding Steiner Triple Systems and n-cycle Systems on Orientable Surfaces
- The existence of square integer Heffter arrays
- Globally simple Heffter arrays and orthogonal cyclic cycle decompositions
- The existence of square non-integer Heffter arrays
- Tight Heffter Arrays Exist for all Possible Values
This page was built for publication: A tour problem on a toroidal board