Étale monodromy and rational equivalence for -cycles on cubic hypersurfaces in
From MaRDI portal
Publication:5112426
DOI10.1070/SM9240zbMath1448.14011arXiv1405.6430OpenAlexW2985134276MaRDI QIDQ5112426
Kalyan Banerjee, Vladimir Guletskii
Publication date: 29 May 2020
Published in: Sbornik: Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1405.6430
algebraic cyclesChow schemes\(l\)-adic étale monodromycubic fourfold hypersurfacesPicard-Lefschetz formulae
(4)-folds (14J35) (3)-folds (14J30) Structure of families (Picard-Lefschetz, monodromy, etc.) (14D05) Algebraic cycles (14C25) (p)-adic cohomology, crystalline cohomology (14F30)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Torsion dans le groupe de Chow de codimension deux
- Théorème de Torelli pour les cubiques de \({\mathbb{P}}^ 5\). (Torelli theorem for the cubics of \({\mathbb{P}}^ 5)\)
- The topology of complex projective varieties after S. Lefschetz
- La conjecture de Weil. II
- Variations of Hodge structure and zero cycles on general surfaces
- The torsion of the group of 0-cycles modulo rational equivalence
- La conjecture de Weil. I
- Symplectic involutions of \(K3\) surfaces act trivially on \(\mathrm{CH}_0\)
- Algebraic cycles and fibrations
- Rational equivalence of O-cycles on surfaces
- On the universal \(\mathrm{CH}_0\) group of cubic hypersurfaces
- The generalized Hodge and Bloch conjectures are equivalent for general complete intersections
- $ K$-COHOMOLOGY OF SEVERI-BRAUER VARIETIES AND THE NORM RESIDUE HOMOMORPHISM
- Variétés de Prym et jacobiennes intermédiaires
- Motives and representability of algebraic cycles on threefolds over a field
- On relations among 1-cycles on cubic hypersurfaces
- ON $\Gamma$-EQUIVALENCE OF ZERO-DIMENSIONAL CYCLES
- Higher-dimensional algebraic geometry
This page was built for publication: Étale monodromy and rational equivalence for -cycles on cubic hypersurfaces in