Restarting iterative projection methods for Hermitian nonlinear eigenvalue problems with minmax property
DOI10.1007/s00211-016-0804-3zbMath1358.65032OpenAlexW2369881961WikidataQ42144463 ScholiaQ42144463MaRDI QIDQ512155
Heinrich Voss, Marta M. Betcke
Publication date: 24 February 2017
Published in: Numerische Mathematik (Search for Journal in Brave)
Full work available at URL: http://europepmc.org/articles/pmc5445551
nonlinear eigenvalue problemJacobi-Davidson methodquadratic eigenvalue problemsrestartnonlinear Arnoldi methodgyroscopic eigenvalue problemiterative projection methodminmax characterizationpurge and lock
Numerical solution of nonlinear eigenvalue and eigenvector problems (65H17) Motion of the gyroscope (70E05)
Related Items (6)
Uses Software
Cites Work
- A linear eigenvalue algorithm for the nonlinear eigenvalue problem
- Efficient Arnoldi-type algorithms for rational eigenvalue problems arising in fluid-solid systems
- Detecting hyperbolic and definite matrix polynomials
- Rational Krylov for nonlinear eigenproblems, an iterative projection method.
- Nonlinear Rayleigh-Ritz iterative method for solving large scale nonlinear eigenvalue problems
- An Arnoldi method for nonlinear eigenvalue problems
- Local convergence analysis of several inexact Newton-type algorithms for general nonlinear eigenvalue problems
- A minimax theory for overdamped systems
- Locking and Restarting Quadratic Eigenvalue Solvers
- Robust Successive Computation of Eigenpairs for Nonlinear Eigenvalue Problems
- Computing a Partial Schur Factorization of Nonlinear Eigenvalue Problems Using the Infinite Arnoldi Method
- A Jacobi-Davidson method for two-real-parameter nonlinear eigenvalue problems arising from delay-differential equations
- An Arnoldi type projection method for nonlinear symmetric eigenproblems
- A minmax principle for nonlinear eigenproblems depending continuously on the eigenparameter
- NLEVP
- The Rayleigh-Ritz method for dissipative or gyroscopic systems
- The Quadratic Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem
- Residual Inverse Iteration for the Nonlinear Eigenvalue Problem
- A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems
- Jacobi--Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils
- A GSVD formulation of a domain decomposition method forplanar eigenvalue problems
- Several properties of invariant pairs of nonlinear algebraic eigenvalue problems
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Restarting iterative projection methods for Hermitian nonlinear eigenvalue problems with minmax property