Bethe ansatz and the spectral theory of affine Lie algebra-valued connections. II: The non simply-laced case

From MaRDI portal
Publication:512324

DOI10.1007/s00220-016-2744-2zbMath1359.82010arXiv1511.00895OpenAlexW3088377650WikidataQ115388564 ScholiaQ115388564MaRDI QIDQ512324

Davide Masoero, Daniele Valeri, Andrea Raimondo

Publication date: 24 February 2017

Published in: Communications in Mathematical Physics (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/1511.00895




Related Items

TOROIDAL q-OPERSWKB periods for higher order ODE and TBA equationsBethe ansatz and the spectral theory of affine Lie algebra-valued connections. I: The simply-laced caseGeometric aspects of the ODE/IM correspondenceSpectra of quantum KdV Hamiltonians, Langlands duality, and affine opersFolded quantum integrable models and deformed \(W\)-algebrasPoisson pencils: reduction, exactness, and invariants\(Q\widetilde{Q}\)-systems for twisted quantum affine algebras3D mirror symmetry for instanton moduli spacesAffine Gaudin models and hypergeometric functions on affine opers\(q\)-opers, \(QQ\)-systems, and Bethe ansatz II: generalized minorsOn solutions of the Bethe Ansatz for the Quantum KdV modelDeforming the ODE/IM correspondence with \(\mathrm{T}\overline{\mathrm{T}}\)Integrable sigma models at RG fixed points: quantisation as affine Gaudin models\(q\)-opers, \(QQ\)-systems, and Bethe AnsatzODE/IM correspondence and the Argyres-Douglas theoryA functor for constructing R$R$‐matrices in the category O$\mathcal {O}$ of Borel quantum loop algebrasQuantum transfer-matrices for the sausage modelCounting monster potentialsOpers for higher states of quantum KdV modelsMassive ODE/IM correspondence and nonlinear integral equations for ${A_r^{(1)}}$ -type modified affine Toda field equationsMonodromy bootstrap for \(\mathrm{SU}(2|2)\) quantum spectral curves: from Hubbard model to \(\mathrm{AdS}_3/\mathrm{CFT}_2\)TBA equations for the Schrödinger equation with a regular singularityAffine opers and conformal affine TodaODE/IM correspondence for affine Lie algebras: a numerical approach



Cites Work