Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Shannon Meets von Neumann: A Minimax Theorem for Channel Coding in the Presence of a Jammer

From MaRDI portal
Publication:5123898
Jump to:navigation, search

DOI10.1109/TIT.2020.2971682zbMath1448.94131arXiv1811.07358OpenAlexW3005517392MaRDI QIDQ5123898

Sharu Theresa Jose, Ankur A. Kulkarni

Publication date: 29 September 2020

Published in: IEEE Transactions on Information Theory (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/1811.07358


zbMATH Keywords

zero-sum gamechannel codingadversarial jammerfinite blocklength encoder-decoder team


Mathematics Subject Classification ID

2-person games (91A05) Applications of game theory (91A80) Coding theorems (Shannon theory) (94A24) Source coding (94A29)


Related Items (2)

Zero-sum games involving teams against teams: existence of equilibria, and comparison and regularity in information ⋮ Minimax theorems for finite blocklength lossy joint source-channel coding over an arbitrarily varying channel







This page was built for publication: Shannon Meets von Neumann: A Minimax Theorem for Channel Coding in the Presence of a Jammer

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:5123898&oldid=19651665"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 8 February 2024, at 13:59.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki