A STUDY OF POLY-BERNOULLI POLYNOMIALS ASSOCIATED WITH HERMITE POLYNOMIALS WITH q-PARAMETER
DOI10.5831/HMJ.2019.41.4.781zbMath1460.11027OpenAlexW3029157185MaRDI QIDQ5124984
Waseem A. Khan, Divesh Srivastava
Publication date: 30 September 2020
Full work available at URL: http://kiss.kstudy.com/thesis/thesis-view.asp?key=3742899
Hermite polynomialsStirling numbers of second kindpolylogarithm functionBernoulli polynomials with $q$-parameter
Bell and Stirling numbers (11B73) Bernoulli and Euler numbers and polynomials (11B68) Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) (33C45) Other combinatorial number theory (11B75) Bessel and Airy functions, cylinder functions, ({}_0F_1) (33C10)
Cites Work
- Some implicit summation formulas and symmetric identities for the generalized Hermite-Bernoulli polynomials
- Combinatorics of \(\mathcal H\)-primes in quantum matrices
- Poly-Bernoulli numbers
- Bruhat intervals as rooks on skew Ferrers boards
- Poly-Bernoulli numbers and polynomials with a \(q\) parameter
- Some New Classes of Generalized Hermite-Based Apostol-Euler and Apostol-Genocchi Polynomials
- POLYLOGARITHMS AND POLY-BERNOULLI POLYNOMIALS
- A NOTE ON q-ANALOGUE OF POLY-BERNOULLI NUMBERS AND POLYNOMIALS
- Explicit formula for generalization of poly-Bernoulli numbers and polynomials with a,b,c parameters
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A STUDY OF POLY-BERNOULLI POLYNOMIALS ASSOCIATED WITH HERMITE POLYNOMIALS WITH q-PARAMETER