Beta extensions and cuspidal types for \(p\)-adic spin groups
From MaRDI portal
Publication:512824
DOI10.1007/s00229-016-0869-4zbMath1370.22017OpenAlexW2461298098MaRDI QIDQ512824
Publication date: 2 March 2017
Published in: Manuscripta Mathematica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00229-016-0869-4
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Tamely ramified intertwining algebras
- Semisimple characters for \(p\)-adic classical groups
- Jacquet functors and unrefined minimal \(K\)-types
- Semisimple types for \(p\)-adic classical groups
- The supercuspidal representations of \(p\)-adic classical groups
- On the spinor norm
- Representations induced in an invariant subgroup
- Construction of tame supercuspidal representations
- Intertwining and Supercuspidal Types for p -Adic Classical Groups
- The Admissible Dual of GL(N) via Compact Open Subgroups. (AM-129)
- Semisimple strata for p-adic classical groups1
- Représentations cuspidales du groupe linéaire
- Supercuspidal representations: An exhaustion theorem
- Finitude pour les représentations lisses de groupes p-adiques
- Smooth representations of reductive p -ADIC groups: structure theory via types
- Caract\`eres semi-simples de G_2(F), F corps local non archim\'edien
This page was built for publication: Beta extensions and cuspidal types for \(p\)-adic spin groups