Twist, elementary deformation and K/K correspondence in generalized geometry
From MaRDI portal
Publication:5130976
DOI10.1142/S0129167X20500780zbMath1455.53093OpenAlexW3038482701MaRDI QIDQ5130976
Publication date: 31 October 2020
Published in: International Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1142/s0129167x20500780
Hamiltonian vector fieldtwistgeneralized complex structureelementary deformation(toric) generalized Kähler structureKähler/Kähler correspondence
Global differential geometry of Hermitian and Kählerian manifolds (53C55) Momentum maps; symplectic reduction (53D20) Generalized geometries (à la Hitchin) (53D18)
Cites Work
- Unnamed Item
- Unnamed Item
- On the hyperkähler/quaternion Kähler correspondence
- Conification of Kähler and hyper-Kähler manifolds
- Tamed symplectic forms and generalized geometry
- Twisting Hermitian and hypercomplex geometries
- Generalized complex geometry
- Reduction of Courant algebroids and generalized complex structures
- Symmetries in generalized Kähler geometry
- Hamiltonian 2-forms in Kähler geometry. III: Extremal metrics and stability
- Deformations of generalized complex generalized Kähler structures
- Invariant scalar-flat Kähler metrics on \(\mathcal {O} (- \ell )\)
- Toric generalized Kähler structures
- Quaternionic Kähler metrics associated with special Kähler manifolds
- Ricci flow, Killing spinors, and T-duality in generalized geometry
- Bi-hermitian metrics on del Pezzo surfaces
- Hyper-Kähler and quaternionic Kähler manifolds with \(S^{1}\)-symmetries
- Lectures on generalized geometry
- BIHERMITIAN STRUCTURES ON COMPLEX SURFACES Proc. London Math. Soc. (3) 79 (1999) 414–428)
- Generalized complex geometry and T-duality
- Completeness of Projective Special Kähler and Quaternionic Kähler Manifolds
- Elementary Deformations and the HyperKähler-Quaternionic Kähler Correspondence
- Transitive Courant algebroids, string structures and T-duality
This page was built for publication: Twist, elementary deformation and K/K correspondence in generalized geometry