LARGE-SCALE SUBLINEARLY LIPSCHITZ GEOMETRY OF HYPERBOLIC SPACES
From MaRDI portal
Publication:5140576
DOI10.1017/S1474748018000567WikidataQ128776734 ScholiaQ128776734MaRDI QIDQ5140576
Publication date: 16 December 2020
Published in: Journal of the Institute of Mathematics of Jussieu (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1801.05163
Quasiconformal mappings in (mathbb{R}^n), other generalizations (30C65) Asymptotic properties of groups (20F69) Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces (53C23) Hyperbolic groups and nonpositively curved groups (20F67) Quasiconformal mappings in metric spaces (30L10)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Contracting automorphisms and \(L^p\)-cohomology in degree one
- Elements of asymptotic geometry
- Carnot-Carathéodory metrics and quasiisometries of symmetric spaces of rank 1
- Sur les groupes hyperboliques d'après Mikhael Gromov. (On the hyperbolic groups à la M. Gromov)
- Asymptotic cones of Lie groups and cone equivalences
- A quantitative version of the Morse lemma and quasi-isometries fixing the ideal boundary
- On homogeneous manifolds of negative curvature
- On quasi-isometry invariants associated to a Heintze group
- EXPLICIT CONSTRUCTIONS OF UNIVERSAL ℝ-TREES AND ASYMPTOTIC GEOMETRY OF HYPERBOLIC SPACES
- Dimension conforme et sphère à l'infini des variétés à courbure négative
- Dimension of asymptotic cones of Lie groups
- Geometric Group Theory
- On the quasi-isometric classification of locally compact groups
- QUASI-ISOMETRY INVARIANTS AND ASYMPTOTIC CONES
- On the commability and quasi-isometry classification of focal groups
- A Theory of Covering and Differentiation
This page was built for publication: LARGE-SCALE SUBLINEARLY LIPSCHITZ GEOMETRY OF HYPERBOLIC SPACES