Variable-order fractional Sobolev spaces and nonlinear elliptic equations with variable exponents
From MaRDI portal
Publication:5140945
DOI10.1063/5.0004341zbMath1462.35433OpenAlexW3045253193MaRDI QIDQ5140945
Bin Ge, Yi. Cheng, Ravi P. Agarwal
Publication date: 17 December 2020
Published in: Journal of Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1063/5.0004341
Related Items (5)
A class of \(p_1 (x, \cdot)\) \& \(p_2 (x, \cdot)\)-fractional Kirchhoff-type problem with variable \(s(x, \cdot)\)-order and without the Ambrosetti-Rabinowitz condition in \(\mathbb{R}^N\) ⋮ Nonlocal fractional \(p(\cdot)\)-Kirchhoff systems with variable-order: two and three solutions ⋮ Embedding theorems for variable exponent fractional Sobolev spaces and an application ⋮ Local regularity for nonlocal equations with variable exponents ⋮ Local Hölder regularity for nonlocal equations with variable powers
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Existence results for fractional \(p\)-Laplacian problems via Morse theory
- Local behavior of fractional \(p\)-minimizers
- Hitchhiker's guide to the fractional Sobolev spaces
- Existence of solutions for Kirchhoff type problem involving the non-local fractional \(p\)-Laplacian
- Lebesgue and Sobolev spaces with variable exponents
- Stability of variational eigenvalues for the fractional \(p\)-Laplacian
- Applied functional analysis. Functional analysis, Sobolev spaces and elliptic differential equations
- On Markov process generated by pseudodifferential operator of variable order
- Multiplicity results for variable-order fractional Laplacian equations with variable growth
- On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent
- Comparison and sub-supersolution principles for the fractional \(p(x)\)-Laplacian
- Variable order and distributed order fractional operators
- Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem.
- Fractional eigenvalues
- Fractional Generalized Random Fields of Variable Order
- Fractional Sobolev spaces with variable exponents and fractional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mrow> <mml:mo form="prefix">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo form="postfix">)</mml:mo> </mml:mrow> </mml:mrow> </mml:math>-Laplacians
- Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration
- Multiplicity of weak solutions to non-local elliptic equations involving the fractional p(x)-Laplacian
- Fractional p-eigenvalues
- An Extension Problem Related to the Fractional Laplacian
This page was built for publication: Variable-order fractional Sobolev spaces and nonlinear elliptic equations with variable exponents