On a class of a boundary value problems involving the p(x)-Biharmonic operator
From MaRDI portal
Publication:5142116
DOI10.22199/issn.0717-6279-2019-05-0061zbMath1454.35105OpenAlexW2997681024MaRDI QIDQ5142116
Publication date: 29 December 2020
Published in: Proyecciones (Antofagasta) (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.22199/issn.0717-6279-2019-05-0061
Nonlinear elliptic equations (35J60) Existence problems for PDEs: global existence, local existence, non-existence (35A01) Higher-order elliptic equations (35J30)
Related Items (2)
Existence of two non-zero weak solutions for a \(p(\cdot)\)-biharmonic problem with Navier boundary conditions ⋮ Mixed finite element method for a beam equation with the \(p(x)\)-biharmonic operator
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Existence and multiple solutions for a variable exponent system
- Multiplicity results for Steklov problem with variable exponent
- Positive solutions for robin problem involving the \(p(x)\)-Laplacian
- Electrorheological fluids: modeling and mathematical theory
- On a \(p(x)\)-biharmonic problem with singular weights
- Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem.
- On a \(p(\cdot)\)-biharmonic problem with no-flux boundary condition
- AVERAGING OF FUNCTIONALS OF THE CALCULUS OF VARIATIONS AND ELASTICITY THEORY
- A supersolution-subsolution method for nonlinear biharmonic equations in $$\mathbb{R}^N $$
- Multiple small solutions for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mrow><mml:mo form="prefix">(</mml:mo><mml:mi>x</mml:mi><mml:mo form="postfix">)</mml:mo></mml:mrow></mml:mrow></mml:math>-Schrödinger equations with local sublinear nonlinearities via genus theory
- Variable Exponent, Linear Growth Functionals in Image Restoration
- Eigenvalues for a fourth order elliptic problem
- Continuous spectrum of a fourth order nonhomogeneous differential operators with variable exponent
- On the spaces \(L^{p(x)}(\Omega)\) and \(W^{m,p(x)}(\Omega)\)
This page was built for publication: On a class of a boundary value problems involving the p(x)-Biharmonic operator