Arithmetic of function field units
From MaRDI portal
Publication:514357
DOI10.1007/s00208-016-1405-2zbMath1382.11043arXiv1506.06286OpenAlexW2248272439MaRDI QIDQ514357
Bruno Anglès, Floric Tavares Ribeiro
Publication date: 1 March 2017
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1506.06286
Arithmetic theory of algebraic function fields (11R58) Cyclotomic function fields (class groups, Bernoulli objects, etc.) (11R60) Drinfel'd modules; higher-dimensional motives, etc. (11G09)
Related Items
A class formula for admissible Anderson modules ⋮ From the Carlitz exponential to Drinfeld modular forms ⋮ On the Stark units of Drinfeld modules ⋮ Algebraic relations among Goss’s zeta values on elliptic curves ⋮ On equivariant class formulas for Anderson modules ⋮ Universal families of Eulerian multiple zeta values in positive characteristic ⋮ Special functions and twisted L-series ⋮ Deformation of multiple zeta values and their logarithmic interpretation in positive characteristic ⋮ The de Rham isomorphism for Drinfeld modules over Tate algebras ⋮ Special values of Goss \(L\)-series attached to Drinfeld modules of rank 2 ⋮ Recent developments in the theory of Anderson modules ⋮ Hyperderivative power sums, Vandermonde matrices, and Carlitz multiplication coefficients ⋮ Taelman \(L\)-values for Drinfeld modules over Tate algebras ⋮ On special \(L\)-values of \(t\)-modules ⋮ On identities for zeta values in Tate algebras
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Functional identities for \(L\)-series values in positive characteristic
- A Herbrand-Ribet theorem for function fields
- Special \(L\)-values of abelian \(t\)-modules
- A Dirichlet unit theorem for Drinfeld modules
- Tensor powers of the Carlitz module and zeta values
- Special \(L\)-values of Drinfeld modules
- Class fields of abelian extensions of \(\mathbb Q\)
- The Stark conjectures on Artin \(L\)-functions at \(s=0\). Lecture notes of a course in Orsay edited by Dominique Bernardi and Norbert Schappacher.
- Class-groups of function fields
- Gauss sums for \({\mathbb F}_ q[T\)]
- \(t\)-motives
- On the Stickelberger ideal and the circular units of an abelian field
- \(v\)-adic zeta functions, \(L\)-series and measures for function fields
- Rank one elliptic \(A\)-modules and \(A\)-harmonic series
- Rigid analytic geometry and its applications
- Log-algebraicity of twisted \(A\)-harmonic series and special values of \(L\)-series in characteristic \(p\)
- Values of certain \(L\)-series in positive characteristic
- The Spiegelungssatz for the Carlitz module; addendum to ``On a problem à la Kummer-Vandiver for function fields
- Equivariant special \(L\)-values of abelian \(t\)-modules
- Iwasawa main conjecture for the Carlitz cyclotomic extension and applications
- Universal Gauss-Thakur sums and \(L\)-series
- A class formula for \(L\)-series in positive characteristic
- Arithmetic of positive characteristic -series values in Tate algebras
- Zur Struktur der l-Klassengruppe galoisscher Zahlkörper.
- A Note on Bernoulli-Goss Polynomials
- Units and class-groups in the arithmetic theory of function fields
- Anderson-Stark units for 𝔽_{𝕢}[𝜃]
- Log‐algebraic identities on Drinfeld modules and special L‐values
- Arithmetic of characteristic p special L-values