Cohomology of algebraic varieties over the maximal cyclotomic extension of a global field
From MaRDI portal
Publication:5145500
DOI10.1090/proc/14841zbMath1457.14046OpenAlexW2982659646WikidataQ126862311 ScholiaQ126862311MaRDI QIDQ5145500
Publication date: 20 January 2021
Published in: Proceedings of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1090/proc/14841
Étale and other Grothendieck topologies and (co)homologies (14F20) Algebraic cycles (14C25) Global ground fields in algebraic geometry (14G25)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- \(K_2\)-cohomology and the second Chow group
- Les suites spectrales associées au complexe de De Rham-Witt
- Finiteness theorems for abelian varieties over number fields.
- La conjecture de Weil. II
- Finiteness theorems in geometric classfield theory. (With an appendix by Kenneth A. Ribet)
- Relations between \(K_2\) and Galois cohomology
- Cohomology and torsion cycles over the maximal cyclotomic extension
- Descente galoisienne sur le groupe de Brauer
- The Homology of Kummer Manifolds
- A finiteness theorem for the Brauer group of abelian varieties and 𝐾3 surfaces
- Complexe de de\thinspace Rham-Witt et cohomologie cristalline
This page was built for publication: Cohomology of algebraic varieties over the maximal cyclotomic extension of a global field