Exponential integrability for logarithmic potentials of functions in generalized Lebesgue spaces \(L(\log L)^{q(\cdot)}\) over non-doubling measure spaces
DOI10.11650/tjm.19.2015.5564zbMath1357.31006OpenAlexW2182812762MaRDI QIDQ514971
Sachihiro Kanemori, Takao Ohno, Tetsu Shimomura
Publication date: 9 March 2017
Published in: Taiwanese Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.11650/tjm.19.2015.5564
logarithmic potentialexponential integrabilitymetric measure spacevariable exponentnon-doubling measure
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Potential theory on fractals and metric spaces (31E05)
This page was built for publication: Exponential integrability for logarithmic potentials of functions in generalized Lebesgue spaces \(L(\log L)^{q(\cdot)}\) over non-doubling measure spaces