Maximization of the Steklov Eigenvalues With a Diameter Constraint
From MaRDI portal
Publication:5150317
DOI10.1137/20M1335042zbMath1457.49028arXiv2004.14142OpenAlexW3121861552MaRDI QIDQ5150317
Florent Nacry, Beniamin Bogosel, Abdel Kader Al Sayed, Antoine Henrot
Publication date: 15 February 2021
Published in: SIAM Journal on Mathematical Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2004.14142
Estimates of eigenvalues in context of PDEs (35P15) Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation (35J05) Optimization of shapes other than minimal surfaces (49Q10)
Related Items (3)
Tubular excision and Steklov eigenvalues ⋮ A new numerical approach for solving shape optimization fourth-order spectral problems among convex domains ⋮ Some recent developments on the Steklov eigenvalue problem
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An extremal eigenvalue problem for the Wentzell-Laplace operator
- Existence of minimizers for spectral problems
- The Steklov spectrum on moving domains
- Isoperimetric control of the Steklov spectrum
- Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions
- Shape variation and optimization. A geometrical analysis
- Minimization of the \(k\)-th eigenvalue of the Dirichlet Laplacian
- \(L^\infty\) bounds of Steklov eigenfunctions and spectrum stability under domain variation
- Spectral geometry of the Steklov problem (survey article)
- Variational methods in shape optimization problems
- On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming
- Darstellung der Eigenwerte von \(\Delta u+\lambda u=0\) durch ein Randintegral
- Semidefinite programming for optimizing convex bodies under width constraints
- Shape optimization and spectral theory
- Minimization of the Eigenvalues of the Dirichlet-Laplacian with a Diameter Constraint
- New development in freefem++
- Asymptotic behaviour of optimal spectral planar domains with fixed perimeter
- Optimal Shapes Maximizing the Steklov Eigenvalues
This page was built for publication: Maximization of the Steklov Eigenvalues With a Diameter Constraint