An optimal control problem of the 3D viscous Camassa–Holm equations
From MaRDI portal
Publication:5151526
DOI10.1080/02331934.2019.1696340zbMath1479.49008OpenAlexW2991381023MaRDI QIDQ5151526
Publication date: 19 February 2021
Published in: Optimization (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/02331934.2019.1696340
optimal controlexistenceviscous Camassa-Holm equationsnecessary optimality conditionsufficient optimality condition
Optimality conditions for problems involving partial differential equations (49K20) PDEs in connection with fluid mechanics (35Q35) Existence theories for optimal control problems involving partial differential equations (49J20) Flow control and optimization for incompressible viscous fluids (76D55)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Null controllability of the viscous Camassa-Holm equation with moving control
- Data assimilation for the Navier-Stokes-\(\alpha \) equations
- On some control problems in fluid mechanics
- On questions of decay and existence for the viscous Camassa-Holm equations
- Optimal control of the viscous Camassa-Holm equation
- Compact sets in the space \(L^ p(0,T;B)\)
- The Euler-Poincaré equations and semidirect products with applications to continuum theories
- Attractors for the two-dimensional Navier--Stokes-\({\alpha}\) model: an \({\alpha}\)-dependence study
- Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains.
- Continuous data assimilation for the three-dimensional Navier–Stokes-α model
- Optimal Control of the Instationary Three Dimensional Navier-Stokes-Voigt Equations
- Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations
- Existence of optimal controls for viscous flow problems
- An integrable shallow water equation with peaked solitons
- Global well–posedness for the Lagrangian averaged Navier–Stokes (LANS–α) equations on bounded domains
- Second Order Methods for Optimal Control of Time-Dependent Fluid Flow
- Decay characterization of solutions to the viscous Camassa–Holm equations
- The Velocity Tracking Problem for Navier--Stokes Flows with Bounded Distributed Controls
- Optimal Controls of 3-Dimensional Navier--Stokes Equations with State Constraints
- Perspectives in Flow Control and Optimization
- On convergence of trajectory attractors of the 3D Navier-Stokes-α model as α approaches 0
- Set-valued analysis
- The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory