Cubic function fields with prescribed ramification
From MaRDI portal
Publication:5155870
DOI10.1142/S1793042121500755zbMath1491.11100arXiv2003.06673OpenAlexW3012095720MaRDI QIDQ5155870
Sophie Marques, Jeroen Sijsling, Valentijn Karemaker
Publication date: 8 October 2021
Published in: International Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2003.06673
Arithmetic theory of algebraic function fields (11R58) Quadratic extensions (11R11) Families, moduli of curves (algebraic) (14H10) Cubic and quartic extensions (11R16) Algebraic functions and function fields in algebraic geometry (14H05)
Related Items (2)
The geometry of the moduli space of non-cyclic biquadratic field extensions ⋮ Irreducible polynomials from a cubic transformation
Uses Software
Cites Work
- Unnamed Item
- Trivial points on towers of curves
- On computing integral points of a Mordell curve over rational function fields in characteristic \(>3\)
- Cubic fields: a primer
- A complete study of the ramification for any separable cubic global function field
- Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects
- Séminaire de géométrie algébrique du Bois Marie 1960/61 (SGA 1), dirigé par Alexander Grothendieck. Augmenté de deux exposés de M. Raynaud. Revêtements étales et groupe fondamental. Exposés I à XIII. (Seminar on algebraic geometry at Bois Marie 1960/61 (SGA 1), directed by Alexander Grothendieck. Enlarged by two reports of M. Raynaud. Ètale coverings and fundamental group)
- Explicit Galois obstruction and descent for hyperelliptic curves with tamely cyclic reduced automorphism group
- Tabulation of cubic function fields via polynomial binary cubic forms
- On computing non-Galois cubic global function fields of prescribed discriminant in characteristic $>3$
- Construction of all cubic function fields of a given square-free discriminant
- Constructing and tabulating dihedral function fields
- On the deformation of Artin-Schreier to Kummer
- Identities for field extensions generalizing the Ohno–Nakagawa relations
- An Explicit Treatment of Cubic Function Fields with Applications
- The Simplest Cubic Fields
- A fast algorithm to compute cubic fields
- Tabulation of Cubic Function Fields with Imaginary and Unusual Hessian
- Algorithmic Number Theory
- Tata lectures on theta. II: Jacobian theta functions and differential equations. With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman, and H. Umemura
This page was built for publication: Cubic function fields with prescribed ramification