Relative n-rigid objects in (n + 2)-angulated categories
From MaRDI portal
Publication:5157906
DOI10.1142/S0219498821501577zbMath1472.18011OpenAlexW3042339412MaRDI QIDQ5157906
Liu, Zhongkui, Zongyang Xie, Zhen Xing Di
Publication date: 20 October 2021
Published in: Journal of Algebra and Its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1142/s0219498821501577
Abelian categories, Grothendieck categories (18E10) Derived categories, triangulated categories (18G80)
Related Items
Cites Work
- Unnamed Item
- \(n\)-abelian and \(n\)-exact categories
- The axioms for \(n\)-angulated categories
- The Grothendieck group of an \(n\)-angulated category
- Projective dimension of modules over cluster-tilted algebras.
- Cluster tilting for higher Auslander algebras.
- Higher-dimensional cluster combinatorics and representation theory
- Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories.
- Auslander correspondence.
- Relative rigid objects in triangulated categories
- A general construction of \(n\)-angulated categories using periodic injective resolutions
- \(n\)-abelian quotient categories
- Auslander-Reiten \((d + 2)\)-angles in subcategories and a \((d + 2)\)-angulated generalisation of a theorem by Brüning
- \(d\)-abelian quotients of \((d+2)\)-angulated categories
- Maximal \(\tau_d\)-rigid pairs
- Homotopy Cartesian diagrams in \(n\)-angulated categories
- Tilting theory and cluster combinatorics.
- Highern-angulations from local rings
- Silting mutation in triangulated categories
- Modules of projective dimension one over noncommutative prüfer rings
- Torsion Classes and t-Structures in Higher Homological Algebra
- Relative cluster tilting objects in triangulated categories
- An introduction to higher Auslander-Reiten theory
- n-angulated categories
- d-Auslander–Reiten sequences in subcategories
- -tilting theory