The eta function of the localised Dirac operator for the universal cover of \(\mathrm{SL}_2(\mathbb{R})\)
From MaRDI portal
Publication:517110
DOI10.1016/j.jfa.2016.12.031zbMath1367.58015OpenAlexW2570817802MaRDI QIDQ517110
Publication date: 16 March 2017
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jfa.2016.12.031
eta functionlocalized Dirac operatorlocalized eta invariantuniversal cover of \(\mathrm{SL}_2(\mathbb{R})\)
Spectral problems; spectral geometry; scattering theory on manifolds (58J50) Analysis on real and complex Lie groups (22E30) Eta-invariants, Chern-Simons invariants (58J28)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The eta invariant and the K-theory of odd dimensional spherical space forms
- The local spectrum of the Dirac operator for the universal cover of \(\mathrm{SL}_2(\mathbb R)\)
- The residue of the global eta function at the origin
- Relative zeta functions, relative determinants and scattering theory
- The Plancherel formula for the universal covering group of SL(R, 2)
- Irreducible unitary representations of the Lorentz group
- Zeta determinant for double sequences of spectral type
- Spectral Asymmetry and Riemannian Geometry
- Zeta invariants for sequences of spectral type, special functions and the Lerch formula
- Spectral asymmetry and Riemannian geometry. II