Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on \([0, \pi]\)
From MaRDI portal
Publication:517500
DOI10.1016/j.crma.2017.01.017zbMath1362.42006OpenAlexW2591398903MaRDI QIDQ517500
Radouan Daher, Salah El Ouadih
Publication date: 23 March 2017
Published in: Comptes Rendus. Mathématique. Académie des Sciences, Paris (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.crma.2017.01.017
Fourier coefficients, Fourier series of functions with special properties, special Fourier series (42A16) Summability and absolute summability of Fourier and trigonometric series (42A24)
Related Items
Generalized distributions and Jacobi-Dunkl approximations, Generalized Lipschitz conditions for absolute convergence of weighted Jacobi-Dunkl series, Lipschitz conditions in Damek-Ricci spaces, Discrete Fourier-Laplace transforms of Lipschitz functions in the spaces \(S^{(p,q)}(\sigma^{m-1})\), On spherical analogues of the classical theorems of Titchmarsh, Fourier-Bessel series of Lipschitz functions in weighted spaces \(L_p([0, 1, t^{2\alpha +1}dt)\)]
Cites Work
- Generalization of Titchmarsh's theorem for the Fourier transform in the space \(\mathrm {L}^{2}(\mathbb {R}^{n})\)
- Dini Lipschitz functions for the Dunkl transform in the space \(\mathrm{L}^{2}(\mathbb{R}^{d},w_{k}(x)dx)\)
- The convolution structure for Jacobi function expansions
- Fourier-Jacobi harmonic analysis and approximation of functions
- A Convolution Structure for Jacobi Series
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item