Approximation of the 2D incompressible electrohydrodynamics system by the artificial compressibility method
From MaRDI portal
Publication:518352
DOI10.1186/s13661-016-0743-zzbMath1366.35142OpenAlexW2577392591WikidataQ59527109 ScholiaQ59527109MaRDI QIDQ518352
Publication date: 28 March 2017
Published in: Boundary Value Problems (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1186/s13661-016-0743-z
PDEs in connection with fluid mechanics (35Q35) Magnetohydrodynamics and electrohydrodynamics (76W05) Perturbations in context of PDEs (35B20)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Uniqueness of weak solutions to an electrohydrodynamics model
- Thermoelasticity of initially stressed bodies, asymptotic equipartition of energies
- Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions
- Well-posedness of a dissipative nonlinear electrohydrodynamic system in modulation spaces
- Quasineutral limit of the electro-diffusion model arising in electrohydrodynamics
- The incompressible limit of the full Navier-Stokes-Fourier system on domains with rough boundaries
- Incompressible limit for a viscous compressible fluid
- Global attractors in electrohydrodynamics
- Approximation of the incompressible convective Brinkman-Forchheimer equations
- Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. I
- Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II
- THE ARTIFICIAL COMPRESSIBILITY APPROXIMATION FOR MHD EQUATIONS IN UNBOUNDED DOMAIN
- Leray weak solutions of the incompressible Navier Stokes system on exterior domains via the artificial compressibility method
- ON THE INCOMPRESSIBLE LIMIT FOR THE NAVIER–STOKES–FOURIER SYSTEM IN DOMAINS WITH WAVY BOTTOMS
- On the artificial compressibility method for the Navier-Stokes-Fourier system
- Approximation of the incompressible non‐Newtonian fluid equations by the artificial compressibility method
- Incompressible Limit of the Compressible Magnetohydrodynamic Equations with Vanishing Viscosity Coefficients
- A DISPERSIVE APPROACH TO THE ARTIFICIAL COMPRESSIBILITY APPROXIMATIONS OF THE NAVIER–STOKES EQUATIONS IN 3D
- On the Convergence of Discrete Approximations to the Navier-Stokes Equations
- Numerical Solution of the Navier-Stokes Equations
This page was built for publication: Approximation of the 2D incompressible electrohydrodynamics system by the artificial compressibility method