Shape optimization for low Neumann and Steklov eigenvalues

From MaRDI portal
Publication:5187924

DOI10.1002/mma.1222zbMath1186.35121arXiv0811.2617OpenAlexW2964153620MaRDI QIDQ5187924

Iosif Polterovich, Alexandre Girouard

Publication date: 9 March 2010

Published in: Mathematical Methods in the Applied Sciences (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/0811.2617




Related Items (25)

The Dirichlet-to-Neumann map, the boundary Laplacian, and Hörmander's rediscovered manuscriptTwo balls maximize the third Neumann eigenvalue in hyperbolic spaceTrace and inverse trace of Steklov eigenvaluesA combined finite element and Bayesian optimization framework for shape optimization in spectral geometryComputational Methods for Extremal Steklov ProblemsOn the Steklov spectrum of covering spaces and total spacesWeyl's law for the Steklov problem on surfaces with rough boundaryMaximizers beyond the hemisphere for the second Neumann eigenvalueApplications of possibly hidden symmetry to Steklov and mixed Steklov problems on surfacesEstimates for higher Steklov eigenvaluesVariational aspects of Laplace eigenvalues on Riemannian surfacesOptimization of Steklov-Neumann eigenvaluesThe Steklov Problem on Differential FormsMultiplicity bounds for Steklov eigenvalues on Riemannian surfacesFrom Steklov to Neumann and Beyond, via Robin: The Szegő WayWell-posedness of Hersch-Szegő's center of mass by hyperbolic energy minimizationProperties of optimizers of the principal eigenvalue with indefinite weight and Robin conditionsThe Steklov spectrum on moving domainsOptimal Shapes Maximizing the Steklov EigenvaluesNumerical studies of the Steklov eigenvalue problem via conformal mappingsIsoperimetric control of the Steklov spectrumTrace and inverse trace of Steklov eigenvalues. II.Steklov eigenvalues and quasiconformal maps of simply connected planar domainsAsymptotic behaviour of the Steklov spectrum on dumbbell domainsHeat invariants of the Steklov problem



Cites Work


This page was built for publication: Shape optimization for low Neumann and Steklov eigenvalues