Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Equivariant K-theory of quaternionic flag manifolds

From MaRDI portal
Publication:5188021
Jump to:navigation, search

DOI10.1017/is009009029jkt082zbMath1185.19003arXiv0710.3766OpenAlexW2963767818MaRDI QIDQ5188021

Augustin-Liviu Mare, Matthieu Willems

Publication date: 10 March 2010

Published in: Journal of K-theory (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/0710.3766


zbMATH Keywords

complex flag manifoldsequivariant topological \(K\)-theoryquaternionic flag manifoldGoresky-Kottwitz-MacPherson type presentation


Mathematics Subject Classification ID

Grassmannians, Schubert varieties, flag manifolds (14M15) Algebraic topology of manifolds (57N65) Equivariant (K)-theory (19L47)




Cites Work

  • Unnamed Item
  • A Chevalley formula in equivariant \(K\)-theory
  • Equivariant cohomology of quaternionic flag manifolds
  • Equivariant \(K\)-theory and equivariant cohomology
  • Affine Hecke algebras and the Schubert calculus
  • Equivariant \(K\)-theory of Bott towers. Application to the multiplicative structure of the equivariant \(K\)-theory of flag varieties
  • Equivariant K-theory
  • Homogeneous vector bundles on homogeneous spaces
  • Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts
  • A Pieri-Chevalley formula in the K-theory of a 𝐺/𝐵-bundle




This page was built for publication: Equivariant K-theory of quaternionic flag manifolds

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:5188021&oldid=19766557"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 8 February 2024, at 16:22.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki