TERAI'S CONJECTURE ON EXPONENTIAL DIOPHANTINE EQUATIONS
From MaRDI portal
Publication:5198400
DOI10.1142/S1793042111004496zbMath1221.11092WikidataQ123290193 ScholiaQ123290193MaRDI QIDQ5198400
Publication date: 8 August 2011
Published in: International Journal of Number Theory (Search for Journal in Brave)
Congruences; primitive roots; residue systems (11A07) Exponential Diophantine equations (11D61) Higher degree equations; Fermat's equation (11D41)
Related Items (8)
Exceptional cases of Terai's conjecture on Diophantine equations ⋮ On the exponential Diophantine equation \((3pm^2-1)^x + ( p( p - 3)m^2 + 1)^y = (pm)^z\) ⋮ On the exponential Diophantine equation $(n-1)^{x}+(n+2)^{y}=n^{z}$ ⋮ The exponential Diophantine equation \(\left(4 m^2 + 1\right)^x + \left(5 m^2 - 1\right)^y = (3 m)^z\) ⋮ On the Diophantine equation (( c + 1) m 2 + 1) x + ( cm 2 ⋮ On the Diophantine equation $(5pn^{2}-1)^{x}+(p(p-5)n^{2}+1)^{y}=(pn)^{z}$ ⋮ ON THE EXPONENTIAL DIOPHANTINE EQUATION ⋮ On the system of Diophantine equations \((m^2 - 1)^r + b^2 = c^2\) and \((m^2 - 1)^x + b^y = c^z\)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- On the Diophantine equation \(x^2= y^p+2^kz^p\)
- Sur une classe d'équations exponentielles
- The diophantine equation \(a^ x+b^ y=c^ z\)
- Zur Approximation algebraischer Zahlen. I: Über den grössten Primteiler binärer Formen
- The Diophantine equation \(Ax^ p+By^ q=Cz^ r\).
- On a conjecture on exponential Diophantine equations
- An application of a lower bound for linear forms in two logarithms to the Terai–Jeśmanowicz conjecture
- Ternary Diophantine Equations via Galois Representations and Modular Forms
- A conjecture concerning the exponential diophantine equation ax+by=cz
- Sur les équations xp+2βyp= z2et xp+2βyp= 2z2
- On the Equations zm = F (x, y ) and Axp + Byq = Czr
This page was built for publication: TERAI'S CONJECTURE ON EXPONENTIAL DIOPHANTINE EQUATIONS