Extension of a parametric family of Diophantine triples in Gaussian integers
From MaRDI portal
Publication:520001
DOI10.1007/s10474-016-0581-6zbMath1374.11042OpenAlexW2288779371MaRDI QIDQ520001
Abdelmejid Bayad, Alan Filipin, Alain S. Togbé
Publication date: 31 March 2017
Published in: Acta Mathematica Hungarica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10474-016-0581-6
Related Items
Diophantine quintuples containing two pairs of conjugates in some quadratic fields, On the extensions of the Diophantine triples in Gaussian integers, Formulas for Diophantine quintuples containing two pairs of conjugates in some quadratic fields, On the size of Diophantine m-tuples in imaginary quadratic number rings
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On Diophantine quintuples and \(D(-1)\)-quadruples
- An absolute bound for the size of Diophantine \(m\)-tuples
- On the extensibility of D(−1)-triples {1, b, c} in the ring \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(\mathbb{Z}\left[ {\sqrt { - t} } \right\) \end{document}, t > 0]
- Logarithmic forms and group varieties.
- Searching for Diophantine quintuples
- A SYSTEM OF RELATIVE PELLIAN EQUATIONS AND A RELATED FAMILY OF RELATIVE THUE EQUATIONS
- On the extensibility of Diophantine triples {k-1, k+1, 4k} for Gaussian integers
- A proof of the Hoggatt-Bergum conjecture
- There are only finitely many Diophantine quintuples
- There Are Infinitely Many Rational Diophantine Sextuples
- Some rational Diophantine sextuples
- THE EQUATIONS 3x2−2 = y2 AND 8x2−7 = z2