Complementarity properties of Peirce-diagonalizable linear transformations on Euclidean Jordan algebras†
DOI10.1080/10556788.2011.626036zbMath1336.17019OpenAlexW2040409099MaRDI QIDQ5200558
M. Seetharama Gowda, Jiyuan Tao, Roman Sznajder
Publication date: 6 November 2012
Published in: Optimization Methods and Software (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/10556788.2011.626036
linear complementarity problemsymmetric coneEuclidean Jordan algebraquadratic representationSchur/Hadamard productLypaunov transformationpeirce-diagonalizable transformation
Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming) (90C33) Linear transformations, semilinear transformations (15A04) Simple, semisimple Jordan algebras (17C20) Jordan structures on Banach spaces and algebras (17C65)
Related Items (8)
Cites Work
- Unnamed Item
- More results on Schur complements in Euclidean Jordan algebras
- Some inequalities involving determinants, eigenvalues, and Schur complements in Euclidean Jordan algebras
- Some P-properties for linear transformations on Euclidean Jordan algebras
- Monotone functions on formally real Jordan algebras
- Z-transformations on proper and symmetric cones
- On the finiteness of the cone spectrum of certain linear transformations on Euclidean Jordan algebras
- An existence theorem for the complementarity problem
- On Q-matrices
- A Continuation Method for Nonlinear Complementarity Problems over Symmetric Cones
- Finite-Dimensional Variational Inequalities and Complementarity Problems
- Automorphism Invariance of P- and GUS-Properties of Linear Transformations on Euclidean Jordan Algebras
- Cross-Positive Matrices
This page was built for publication: Complementarity properties of Peirce-diagonalizable linear transformations on Euclidean Jordan algebras†