A Poisson Limit Theorem for Reliability Models Based on Markov Chains
DOI10.1080/03610920500439331zbMath1087.60033OpenAlexW2019549613MaRDI QIDQ5201481
Publication date: 19 April 2006
Published in: Communications in Statistics - Theory and Methods (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/03610920500439331
filteringcompound Poisson approximationtime inhomogeneous Markov chaindiscrete-time multivariate point process
Martingales with discrete parameter (60G42) Filtering in stochastic control theory (93E11) Markov chains (discrete-time Markov processes on discrete state spaces) (60J10) Markov renewal processes, semi-Markov processes (60K15) Functional limit theorems; invariance principles (60F17) Point processes (e.g., Poisson, Cox, Hawkes processes) (60G55) Limit theorems in probability theory (60F99)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Some Poisson approximations using compensators
- A general Poisson approximation theorem
- The convergence of Cesaro averages for certain nonstationary Markov chains
- Additive Markov processes
- Rare events in queueing systems -- A survey
- Filtered statistical models and Hellinger processes
- Averaging in Markov models with fast Markov switches and applications to queueing models
- Stein's method, Palm theory and Poisson process approximation.
- Switching processes: Averaging principle, diffusion approximation and applications
- Weak and Strong Convergence of the Distributions of Counting Processes
- Recursive filters for partially observable finite Markov chains
- A User-Oriented Software Reliability Model
- Recursive estimation from discrete-time point processes
- The rate of convergence of certain nonhomogeneous Markov chains
- Introduction to Matrix Analytic Methods in Stochastic Modeling
- Discrete-time singularly perturbed Markov chains: aggregation, occupation measures, and switching diffusion limit
- Poisson approximation for some point processes in reliability
- Poisson approximation, compensators and coupling
- Markov Processes with Homogeneous Second Component, II
- Markov additive processes. I
This page was built for publication: A Poisson Limit Theorem for Reliability Models Based on Markov Chains