Geodesic PCA in the Wasserstein space by convex PCA
DOI10.1214/15-AIHP706zbMath1362.62065arXiv1307.7721MaRDI QIDQ520766
Alfredo López, Raúl Gouet, Thierry Klein, Jérémie Bigot
Publication date: 6 April 2017
Published in: Annales de l'Institut Henri Poincaré. Probabilités et Statistiques (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1307.7721
functional data analysisgeodesic spaceWasserstein spaceFréchet meanpopulation pyramidsgeodesic and convex principal component analysisgeodesic principal component analysis (GPCA)inference for family of densities
Factor analysis and principal components; correspondence analysis (62H25) Asymptotic properties of nonparametric inference (62G20) Nonparametric estimation (62G05) Applications of statistics to social sciences (62P25) Geodesics in global differential geometry (53C22)
Related Items (28)
This page was built for publication: Geodesic PCA in the Wasserstein space by convex PCA