The Isoperimetric Problem in Carnot-Caratéodory Spaces
From MaRDI portal
Publication:5214982
DOI10.6092/issn.2240-2829/7799zbMath1483.53053OpenAlexW2887775259MaRDI QIDQ5214982
Publication date: 5 February 2020
Full work available at URL: https://doaj.org/article/4186c959acc64cea82c14cd88ad510b1
Variational problems in a geometric measure-theoretic setting (49Q20) Sub-Riemannian geometry (53C17)
Cites Work
- Rearrangements in metric spaces and in the Heisenberg group
- Isoperimetric problem in \(H\)-type groups and Grushin spaces
- A Hopf differential for constant mean curvature surfaces in \(\mathbb S^2 \times \mathbb R\) and \(\mathbb H^2 \times\mathbb R\)
- An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem
- Functions of bounded variation on ``good metric spaces
- Quantitative isoperimetric inequalities in \(\mathbb H^n\)
- Area-stationary surfaces in the Heisenberg group \(\mathbb H^1\)
- Differential geometry in the large. Seminar lectures New York University 1946 and Stanford University 1956. With a preface by S. S. Chern.
- Isoperimetric inequality in the Grushin plane
- The geometric Sobolev embedding for vector fields and the isoperimetric inequality
- CMC spheres in the Heisenberg group
- A proof by calibration of an isoperimetric inequality in the Heisenberg group \({\mathbb{H}}^{n}\)
- Rotationally invariant hypersurfaces with constant mean curvature in the Heisenberg group \(\mathbb H^n\)
- A characterization of constant mean curvature surfaces in homogeneous 3-manifolds
- Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung
- Beweis der isoperimetrischen Eigenschaft der Kugel im hyperbolischen und sphärischen Raum jeder Dimensionszahl
- Convex isoperimetric sets in the Heisenberg group
- Heisenberg isoperimetric problem. The axial case
- Stratified Lie Groups and Potential Theory for their Sub-Laplacians
- [https://portal.mardi4nfdi.de/wiki/Publication:5689214 Isoperimetric and Sobolev inequalities for Carnot-Carath�odory spaces and the existence of minimal surfaces]
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The Isoperimetric Problem in Carnot-Caratéodory Spaces